不同压缩感知因子对脑SWI“燕尾征”分析的影响The effect of different compressed sensing factors on analysis of "swallow tail sign" in cerebral SWI
杨婧;刘杨颖秋;刘娜;高冰冰;宋清伟;张浩南;苗延巍;
摘要(Abstract):
目的 比较不同脑压缩感知(compressed sensing,CS)磁敏感加权成像(susceptibility weighted imaging,SWI)的加速因子(acceleration factor,AF)对中脑“燕尾征(swallow tail sign, STS)”显示及定量的影响,寻找最佳AF。材料与方法 前瞻性征募40名健康志愿者进行头部3.0 T MRI检查,包括CS-SWI序列(AF=0及CS2、CS4、CS6、CS8、CS10)。对SWI的相位图像进行观察和测量,计数不同AF中STS显示数量。测量相位值(phase value,PV)并计算信噪比(signal to noise ratio,SNR)及对比噪声比(contrast to noise ratio,CNR)。采用Cohen's Kappa分析评估黑质(substantia nigra,SN)和STS主观评价的组间一致性;通过计算组内相关系数(interclass correlation cofficient,ICC),验证PV值和主观评分的一致性。运用Fisher确切概率法分析不同AF下STS显示率的差异。使用单因素方差分析(analysis of variance,ANOVA)中最小显著性差异法(least-significant difference,LSD)对比不同AF条件下SN和STS图像质量的差异。P值经Benjamini-Hochberg的错误发现率(false discovery rate,FDR)法校正,P<0.05认为差异具有统计学意义。结果 2名观察者间的主观评分一致性极好(Kappa>0.80)。PV值测量和主观评分的组内一致性极好(ICC>0.80)。当AF≥6时,STS图像表现为清晰度明显下降,且STS的显示率降低,差异具有统计学意义(P<0.05)。双侧SNs的SNR和CNR在AF>2时差异具有统计学意义(P<0.05)。双侧STSs的SNR和CNR在AF>4时差异具有统计学意义(P<0.05)。结论 由脑SWI图像定量数据结果可知,对STS结构的观察可根据SNR、CNR以及主观评分和显示率变化,可考虑CS4,扫描时间减少4 min 9 s (70.7%)。
关键词(KeyWords): 磁敏感加权成像;压缩感知;燕尾征;加速因子;图像质量
基金项目(Foundation): 国家自然科学基金项目(编号:81671646);; 大连市科技创新基金计划(编号:2020JJ27SN075)~~
作者(Authors): 杨婧;刘杨颖秋;刘娜;高冰冰;宋清伟;张浩南;苗延巍;
参考文献(References):
- [1]Fearnley JM,Lees AJ.Ageing and Parkinson's disease:substantia nigra regional selectivity[J].Brain,1991,114(5):2283-2301.DOI:10.1093/brain/114.5.2283.
- [2]Damier P,Hirsch EC,Agid Y,et al.The substantia nigra of the human brain,Ⅰ:nigrosomes and the nigral matrix,a compartmental organization based on calbindin D (28K) immunohistochemistry[J].Brain,1999,122(8):1421-1436.DOI:10.1093/brain/122.8.1421.
- [3]Damier P,Hirsch EC,Agid Y,et al.The substantia nigra of the human brain,Ⅱ:patterns of loss of dopamine-containing neurons in Parkinson's disease[J].Brain,1999,122(8):1437-1448.DOI:10.1093/brain/122.8.1437.
- [4]Schwarz ST,Mougin O,Xing Y,et al.Parkinson's disease related signal change in the nigrosomes 1-5 and the substantia nigra using T2*weighted 7 T MRI[J].Neuroimage Clin,2018,19:683-689.DOI:10.1016/j.nicl.2018.05.027.
- [5]Yang L,Zhang SD.Application and development of SWI in central nervous system diseases[J].J Med Imaging,2019,29(12):2144-2146.杨露,张士德.SWI在中枢神经系统疾病中的应用及发展[J].医学影像学杂志,2019,29(12):2144-2146.
- [6]Schwarz ST,Afzal M,Morgan PS,et al.The'Swallow Tail'appearance of the healthy nigrosome-a new accurate test of Parkinson's disease:a case-control and retrospective cross-sectional MRI study at 3 T[J].PLo S One,2014,9(4):e93814.DOI:10.1371/journal.pone.0093814.
- [7]Cheng ZH,He N,Huang P,et al.Imaging the nigrosome 1 in the substantia nigra using susceptibility weighted imaging and quantitative susceptibility mapping:An tapplication to Parkinson's disease[J].Neuroimage Clin,2020,25:102-103.DOI:10.1016/j.nicl.2019.102103.
- [8]M?nch S,Sollmann N,Hock A,et al.Magnetic resonance imaging of the brain using Compressed Sensing-quality assessment in daily clinical routine[J].Clin Neuroradiol,2020,30(2):279-286.DOI:10.1007/s00062-019-00789-x.
- [9]Candès EJ,Romberg J,Tao T.Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J].Information Theory,IEEE Transactions,2006,52(2):489-509.DOI:10.1109/TIT.2005.862083.
- [10]Delattre BMA,Boudabbous S,Hansen C,et al.Compressed sensing MRI of different organs:Ready for clinical daily practice[J].Eur Radiol,2020,30(1):308-319.DOI:10.1007/s00330-019-06319-0.
- [11]M?nch S,Sollmann N,Hock A,et al.Magnetic Resonance Imaging of the Brain Using Compressed Sensing-Quality Assessment in Daily Clinical Routine[J].Clin Neuroradiol,2020,30(2):279-286.DOI:10.1007/s00062-019-00789-x.
- [12]Park CJ,Cha J,Ahn SS,et al.Contrast-enhanced high-resolution intracranial vessel wall MRI with compressed sensing:Comparison with conventional T1 volumetric isotropic turbo spin echo acquisition sequence[J].Korean J Radiol,2020,21(12):1334-1344.DOI:10.3348/kjr.2020.0128.
- [13]Blazejewska AI,Schwarz ST,Pitiot A,et al.Visualization of nigrosome1 and its loss in PD:pathoanatomical correlation and in vivo 7 T MRI[J].Neurology,2013,81(6):534-540.DOI:10.1212/WNL.0b013e31829e6fd2.
- [14]Gramsch C,Reuter I,Kraff O,et al.Nigrosome 1 visibility at susceptibility weighted 7 T MRI-a dependable diagnostic marker for Parkinson's disease or merely an inconsistent,age-dependent imaging finding?[J].PLo S One,2017,12:e0185489.DOI:10.1371/journal.pone.0185489.
- [15]Kim JM,Jeong HJ,Bae YJ,et al.Loss of substantia nigra hyperintensity on 7 Tesla MRI of Parkinson's disease,multiple system atrophy,and progressive supranuclear palsy[J].Parkinsonism Relat Disord,2016,26:47-54.DOI:10.1016/j.parkreldis.2016.01.023.
- [16]Gao P,Zhou PY,Wang PQ,et al.Universality analysis of the existence of substantia nigra"swallow tail"appearance of non-Parkinson patients in 3T SWI[J].Eur Rev Med Pharmacol Sci,2016,20(7):1307-1314.
- [17]Mahlknecht P,Krismer F,Poewe W,et al.Meta-analysis of dorsolateral nigral hyperintensity on magnetic resonance imaging as a marker for Parkinson's disease[J].Mov Disord,2017,32(4):619-623.DOI:10.1002/mds.26932.
- [18]Feraco P,Gagliardo C,La Tona G,et al.Imaging of Substantia Nigra in Parkinson's Disease:A Narrative Review[J].Brain Sci,2021,11(6):769.DOI:10.3390/brainsci11060769.
- [19]Zecca L,Casella L,Albertini A,et al.Neuromelanin can protect against iron-mediated oxidative damage in systen modeling iron overload of brain aging and Parkinson's disease[J].J Neurochem,2018,106(4):1866-1875.DOI:10.1111/j.1471-4159.2008.05541.x.
- [20]Liu Z,Shen HC,Lian TH,et al.Iron deposition in substantia nigra:abnormal iron metabolism,neuroinflammatory mechanism and clinical relevance[J].Sci Rep,2017,7(1):14973.DOI:10.1038/s41598-017-14721-1.
- [21]Liu X,Wang N,Chen C,et al.Swallow tail sign on susceptibility map-weighted imaging (SMWI) for disease diagnosing and severity evaluating in parkinsonism[J].Acta Radiol,2021,62(2):234-242.DOI:10.1177/0284185120920793.
- [22]Schmidt MA,Engelhorn T,Marxreiter F,et al.Ultra high-field swi of the substantia nigra at 7 T:reliability and consistency of the swallow-tail sign[J].BMC Neurol,2017,17(1):194.DOI:10.1186/s12883-017-0975-2.
- [23]Cho SJ,Bae YJ,Kim JM,et al.Iron-sensitive magnetic resonance imaging in Parkinson's disease:a systematic review and meta-analysis[J].J Neurol,2021,268(12):4721-4736.DOI:10.1007/s00415-021-10582-x.
- [24]Kau T,Hametner S,Endmayr V,et al.Microvessels may Confound the"Swallow Tail Sign"in Normal Aged Midbrains:A Postmortem 7 TSW-MRI Study[J].J Neuroimaging.2019,29(1):65-69.DOI:10.1111/jon.12576.
- [25]Martin WR,Wieler M,Gee M.Midbrain iron content in early Parkinson disease-a potential biomarker of disease status[J].Neurology.2008,70(16):1411-1417.DOI:10.1212/01.wnl.0000286384.31050.b5.
- [26]Huang W,Ogbuji R,Zhou L,et al.Motoric impairment versus iron deposition gradient in the subthalamic nucleus in Parkinson's disease[J].JNeurosurg,2020,135(1):284-290.DOI:10.3171/2020.5.JNS201163.