基于MRI、钼靶和病理的列线图预测肿块型乳腺浸润性导管癌前哨淋巴结转移的价值Value of a nomogram based on MRI, mammography and pathology for predicting sentinel lymph node metastasis of mass-type breast invasive ductal carcinoma
朱芸;张书海;王小雷;杨昭;李淑华;杨丽;汤晓敏;马宜传;谢宗玉;
摘要(Abstract):
目的 探讨基于MRI、钼靶影像特征联合临床病理因素构建的列线图在预测肿块型乳腺浸润性导管癌前哨淋巴结(sentinel lymph node,SLN)转移中的价值。材料与方法 回顾性分析经病理证实为浸润性导管癌患者的临床病理及影像资料312例,按3∶1随机分成训练组(234例)与验证组(78例),两组间比较采用χ2检验或Fisher精确检验。在训练组中,SLN阴性组158例,阳性组76例,对两组患者的临床病理因素、MRI、钼靶影像特征进行分析。通过多因素Logistic回归分析筛选出独立预测因子,构建预测SLN转移的列线图模型。使用受试者操作特征(receiver operating characteristic,ROC)曲线、校准曲线、Hosmer-Lemeshow检验拟合优度对模型进行评价。结果 临床病理因素、MRI、钼靶影像特征在训练组及验证组间差异无统计学意义(P>0.05)。在训练组中,肿瘤最大径、临床T分期、淋巴结触诊、孕激素受体、人类表皮生长因子受体2、脉管浸润、MRI [肿块形状、乳腺影像报告和数据系统(Breast Imaging Reporting and Data System,BI-RADS)分类、腋窝淋巴结状态]、钼靶(BI-RADS分类、腋窝淋巴结状态)这11个变量在SLN阴性组和阳性组间差异有统计学意义(P<0.05)。通过多因素Logistic回归分析得到,肿瘤最大径、淋巴结触诊、MRI (腋窝淋巴结状态)、钼靶(腋窝淋巴结状态)以及脉管浸润为预测SLN转移的独立危险因素。基于这5个变量构建模型,训练组及验证组ROC曲线下面积分别为0.908和0.897;Hosmer-Lemeshow检验拟合优度P值分别为0.883和0.579 (P>0.05)。结论 基于MRI及钼靶的术前影像学特征联合临床病理因素构建的列线图模型能较好地预测肿块型浸润性导管癌患者SLN转移情况。
关键词(KeyWords): 乳腺癌;浸润性导管癌;列线图;前哨淋巴结;磁共振成像;钼靶检查
基金项目(Foundation): 安徽省教育厅自然科学基金重点项目(编号:KJ2019A0402);; 蚌埠医学院自然科学重点项目(编号:2020byzd145)~~
作者(Authors): 朱芸;张书海;王小雷;杨昭;李淑华;杨丽;汤晓敏;马宜传;谢宗玉;
参考文献(References):
- [1]Sung H,Ferlay J,Siegel RL,et al.Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36cancers in 185 countries[J].CA Cancer J Clin,2021,71(3):209-249.DOI:10.3322/caac.21660.
- [2]Bevers TB,Helvie M,Bonaccio E,et al.Breast cancer screening and diagnosis,version 3.2018,NCCN clinical practice guidelines in oncology[J].J Natl Compr Canc Netw,2018,16(11):1362-1389.DOI:10.6004/jnccn.2018.0083.
- [3]Esposito E,di Micco R,Gentilini OD.Sentinel node biopsy in early breast cancer.A review on recent and ongoing randomized trials[J].Breast,2017,36:14-19.DOI:10.1016/j.breast.2017.08.006.
- [4]Han L,Zhu YB,Liu ZY,et al.Radiomic nomogram for prediction of axillary lymph node metastasis in breast cancer[J].Eur Radiol,2019,29(7):3820-3829.DOI:10.1007/s00330-018-5981-2.
- [5]Sadeghi M,Alamdaran SA,Daneshpajouhnejad P,et al.A logistic regression nomogram to predict axillary lymph node metastasis in early invasive breast cancer patients[J].Breast J,2019,25(4):769-771.DOI:10.1111/tbj.13340.
- [6]Zhu YY,Lv WH,Wu H,et al.A preoperative nomogram for predicting the risk of sentinel lymph node metastasis in patients with T1-2N0breast cancer[J/OL].Jpn J Radiol,2022.(2022-1-22)[2022-3-23].https://link.springer.com/article/10.1007/s11604-021-01236-z.DOI:10.1007/s11604-021-01236-z.
- [7]Chen L,Duan HY,Tang XM,et al.A mammography-based nomogram for prediction of malignancy in breast suspicious calcification[J].Acad Radiol,2021:(21)00416-5.DOI:10.1016/j.acra.2021.09.003.
- [8]Ma WM,Li J,He N,et al.The application value of a nomogram based on breast MRI and axillary ultrasonography for predicting sentinel lymph node metastasis of early-stage breast cancer[J].Chin J Radiol,2020,54(7):694-701.DOI:10.3760/cma.j.cn112149-20200420-00576.马微妹,李姣,何妮,等.基于乳腺MRI及腋窝超声的列线图预测早期乳腺癌前哨淋巴结转移风险的价值[J].中华放射学杂志,2020,54(7):694-701.DOI:10.3760/cma.j.cn112149-20200420-00576.
- [9]D'Orsi CJ,Sickles EA,Mendelson EB,et al.ACR BI-RADS?atlas,breast imaging reporting and data system[Z].Reston:American College of Radiology,2013.
- [10]Yun SJ,Sohn YM,Seo M.Differentiation of benign and metastatic axillary lymph nodes in breast cancer:additive value of MRIcomputer-aided evaluation[J].Clin Radiol,2016,71(4):403.e1-403.e7.DOI:10.1016/j.crad.2016.01.008.
- [11]Hyun SJ,Kim EK,Yoon JH,et al.Adding MRI to ultrasound and ultrasound-guided fine-needle aspiration reduces the false-negative rate of axillary lymph node metastasis diagnosis in breast cancer patients[J].Clin Radiol,2015,70(7):716-722.DOI:10.1016/j.crad.2015.03.004.
- [12]Xue M,Li J,Che SN,et al.The correlation between multiparametric MR imaging characteristics of breast cancer and axillary lymph node metastasis[J].Chin J Magn Reson Imaging,2020,11(7):540-545.DOI:10.12015/issn.1674-8034.2020.07.013.薛梅,李静,车树楠,等.乳腺癌多模态磁共振影像特征与腋窝淋巴结转移的相关性研究[J].磁共振成像,2020,11(7):540-545.DOI:10.12015/issn.1674-8034.2020.07.013.
- [13]Wang CH,Chen XY,Luo HB,et al.Development and internal validation of a preoperative prediction model for sentinel lymph node status in breast cancer:combining radiomics signature and clinical factors[J].Front Oncol,2021,11:754843.DOI:10.3389/fonc.2021.754843.
- [14]Fusco R,Sansone M,Granata V,et al.Use of quantitative morphological and functional features for assessment of axillary lymph node in breast dynamic contrast-enhanced magnetic resonance imaging[J].Biomed Res Int,2018,2018:2610801.DOI:10.1155/2018/2610801.
- [15]Zong QQ,Deng J,Ge WL,et al.Establishment of simple nomograms for predicting axillary lymph node involvement in early breast cancer[J].Cancer Manag Res,2020,12:2025-2035.DOI:10.2147/CMAR.S241641.
- [16]Chen K,Liu JQ,Li SR,et al.Development of nomograms to predict axillary lymph node status in breast cancer patients[J].BMC Cancer,2017,17(1):561.DOI:10.1186/s12885-017-3535-7.
- [17]Chen WX,Wang C,Fu FM,et al.A model to predict the risk of lymph node metastasis in breast cancer based on clinicopathological characteristics[J].Cancer Manag Res,2020,12:10439-10447.DOI:10.2147/CMAR.S272420.
- [18]Chen JY,Chen JJ,Yang BL,et al.Predicting sentinel lymph node metastasis in a Chinese breast cancer population:assessment of an existing nomogram and a new predictive nomogram[J].Breast Cancer Res Treat,2012,135(3):839-848.DOI:10.1007/s10549-012-2219-x.
- [19]Xie F,Yang HP,Wang S,et al.A logistic regression model for predicting axillary lymph node metastases in early breast carcinoma patients[J].Sensors (Basel),2012,12(7):9936-9950.DOI:10.3390/s120709936.
- [20]Okuno J,Miyake T,Sota Y,et al.Development of prediction model including micro RNA expression for sentinel lymph node metastasis in ER-positive and HER2-negative breast cancer[J].Ann Surg Oncol,2021,28(1):310-319.DOI:10.1245/s10434-020-08735-9.
- [21]Yu Y,Wang ZJ,Wei ZY,et al.Development and validation of nomograms for predicting axillary non-SLN metastases in breast cancer patients with 1-2 positive sentinel lymph node macro-metastases:a retrospective analysis of two independent cohorts[J].BMC Cancer,2021,21(1):466.DOI:10.1186/s12885-021-08178-9.
- [22]Hu XE,Xue JY,Peng SJ,et al.Preoperative nomogram for predicting sentinel lymph node metastasis risk in breast cancer:a potential application on omitting sentinel lymph node biopsy[J].Front Oncol,2021,11:665240.DOI:10.3389/fonc.2021.665240.
- [23]Zhang X,Yang ZH,Cui WJ,et al.Preoperative prediction of axillary sentinel lymph node burden with multiparametric MRI-based radiomics nomogram in early-stage breast cancer[J].Eur Radiol,2021,31(8):5924-5939.DOI:10.1007/s00330-020-07674-z.
- [24]Liu C,Zhao ZY,Gu X,et al.Establishment and verification of a bagged-trees-based model for prediction of sentinel lymph node metastasis for early breast cancer patients[J].Front Oncol,2019,9:282.DOI:10.3389/fonc.2019.00282.
- [25]Wang LN,Li JT,Qiao JH,et al.Establishment of a model for predicting sentinel lymph node metastasis in early breast cancer based on contrast-enhanced ultrasound and clinicopathological features[J].Gland Surg,2021,10(5):1701-1712.DOI:10.21037/gs-21-245.
- [26]Liu CL,Ding J,Spuhler K,et al.Preoperative prediction of sentinel lymph node metastasis in breast cancer by radiomic signatures from dynamic contrast-enhanced MRI[J].J Magn Reson Imaging,2019,49(1):131-140.DOI:10.1002/jmri.26224.
- [27]Yang ZB,Lan XW,Huang Z,et al.Development and external validation of a nomogram to predict four or more positive nodes in breast cancer patients with one to three positive sentinel lymph nodes[J].Breast,2020,53:143-151.DOI:10.1016/j.breast.2020.08.001.