DKI在鉴别脑胶质瘤复发与假性进展中的应用价值研究Application value of DKI in distinguishing recurrence and pseudoprogression of glioma
党佩;王立东;黄雪莹;刘静静;吕瑞瑞;杨治花;王晓东;
摘要(Abstract):
目的 探讨扩散峰度成像(diffusional kurtosis imaging,DKI)技术在鉴别脑胶质瘤复发与假性进展中的临床应用价值。材料与方法 回顾性分析宁夏医科大学总医院2018年10月至2020年12月间40例术后行放、化疗并行DKI序列扫描的脑胶质瘤患者资料。通过二次手术病理或经增强MRI扫描随访>6个月,分复发组(24例)与假性进展组(16例)。采用独立样本t检验或Mann-Whitney U检验,受试者工作特征曲线比较两组患者增强病灶和瘤周水肿中DKI参数值:平均扩散峰度(mean kurtosis,MK)、平均扩散系数(mean diffusivity,MD)、径向扩散峰度(radial kurtosis,RK)、轴向扩散峰度、各向异性分数。以患者无进展生存期(gression free survival,PFS)作为事件的观察终点,Cox比例风险模型用于多因素分析。结果 复发组较假性进展组增强病灶的相对平均扩散峰度(ratio of MK,rMK)、相对径向扩散峰度(ratio of RK,rRK)升高(P<0.05),相对平均扩散系数(ratio of MD,rMD)降低(P<0.05),rMK、rRK、rMD的曲线下面积(area under the curve,AUC)分别0.94、0.83、0.70 (P<0.05)。复发组较假性进展组瘤周水肿的rMK升高、rMD降低(P<0.05),rMK、rMD的AUC分别0.82、0.73 (P<0.05)。脑室下区受累、增强病灶的rMK、rRK、rMD和瘤周水肿的rMK、rMD均与PFS具有相关性(P<0.05)。结论 DKI可用于鉴别胶质瘤复发与假性进展,参数值MK可作为较好的影像学标记,增强病灶的MK值是PFS的独立危险因素。
关键词(KeyWords): 脑胶质瘤;复发;假性进展;扩散峰度成像;磁共振成像;瘤周水肿
基金项目(Foundation): 宁夏回族自治区重点研发计划(编号:2019BEG03037)~~
作者(Authors): 党佩;王立东;黄雪莹;刘静静;吕瑞瑞;杨治花;王晓东;
参考文献(References):
- [1]Medical Administration and Hospital Administration Bureau of the National Health Commission.Guidelines for the diagnosis and treatment of glioma(2018 edition)[J].Chin J Neurosurg,2019,35(3):217-239.DOI:10.3760/cma.j.issn.1001-2346.2019.03.001.国家卫生健康委员会医政医管局.脑胶质瘤诊疗规范(2018年版)[J].中华神经外科杂志,2019,35(3):217-239.DOI:10.3760/cma.j.issn.1001-2346.2019.03.001.
- [2]Strauss SB,Meng A,Ebani EJ,et al.Imaging glioblastoma posttreatment:progression,pseudoprogression,pseudoresponse,radiation necrosis[J].Radiol Clin North Am,2019,57(6):1199-1216.DOI:10.1016/j.rcl.2019.07.003.
- [3]Zikou A,Sioka C,Alexiou GA,et al.Radiation necrosis,pseudoprogression,pseudoresponse,and tumor recurrence:imaging challenges for the evaluation of treated gliomas[J].Contrast Media Mol Imaging,2018,2018:6828396.DOI:10.1155/2018/6828396.
- [4]Kruser TJ,Mehta MP,Robins HI.Pseudoprogression after glioma therapy:a comprehensive review[J].Expert Rev Neurother,2013,13(4):389-403.DOI:10.1586/ern.13.7.
- [5]Lu VM,Jue TR,Mc Donald KL,et al.The survival effect of repeat surgery at glioblastoma recurrence and its trend:a systematic review and meta-analysis[J].World Neurosurg,2018,115:453-459.e3.DOI:10.1016/j.wneu.2018.04.016.
- [6]Prager AJ,Martinez N,Beal K,et al.Diffusion and perfusion MRI to differentiate treatment-related changes including pseudoprogression from recurrent tumors in high-grade gliomas with histopathologic evidence[J].AJNR Am J Neuroradiol,2015,36(5):877-885.DOI:10.3174/ajnr.A4218.
- [7]Li Y,Ma YQ,Wu ZJ,et al.Advanced imaging techniques for differentiating pseudoprogression and tumor recurrence after immunotherapy for glioblastoma[J].Front Immunol,2021,12:790674.DOI:10.3389/fimmu.2021.790674.
- [8]Ma B,Blakeley JO,Hong XH,et al.Applying amide proton transfer-weighted MRI to distinguish pseudoprogression from true progression in malignant gliomas[J].J Magn Reson Imaging,2016,44(2):456-462.DOI:10.1002/jmri.25159.
- [9]Wang S,Martinez-Lage M,Sakai Y,et al.Differentiating tumor progression from pseudoprogression in patients with glioblastomas using diffusion tensor imaging and dynamic susceptibility contrast MRI[J].AJNR Am JNeuroradiol,2016,37(1):28-36.DOI:10.3174/ajnr.A4474.
- [10]Guo ZX,Zhu XQ.The progress of applications of amide proton transfer[J].J Med Imaging,2021,31(10):1789-1792.郭子玄,朱西琪.酰胺质子转移成像应用的研究进展[J].医学影像学杂志,2021,31(10):1789-1792.
- [11]Pan F,Wu X,Su ZZ,et al.3D-ASL and DWI in the differential diagnosis of recurrent glioma and pseudo progression[J].J Clin Radiol,2018,37(6):904-908.DOI:10.13437/j.cnki.jcr.2018.06.003.潘锋,吴晓,苏中周,等.3D-ASL技术联合DWI在鉴别脑胶质瘤术后复发与假性进展中的应用价值[J].临床放射学杂志,2018,37(6):904-908.DOI:10.13437/j.cnki.jcr.2018.06.003.
- [12]Takahashi S,Takahashi W,Tanaka S,et al.Radiomics analysis for glioma malignancy evaluation using diffusion kurtosis and tensor imaging[J].Int J Radiat Oncol Biol Phys,2019,105(4):784-791.DOI:10.1016/j.ijrobp.2019.07.011.
- [13]Gao EY,Gao AK,Kit Kung W,et al.Histogram analysis based on diffusion kurtosis imaging:Differentiating glioblastoma multiforme from single brain metastasis and comparing the diagnostic performance of two region of interest placements[J].Eur J Radiol,2022,147:110104.DOI:10.1016/j.ejrad.2021.110104.
- [14]Falk Delgado A,Nilsson M,van Westen D,et al.Glioma grade discrimination with MR diffusion kurtosis imaging:a meta-analysis of diagnostic accuracy[J].Radiology,2018,287(1):119-127.DOI:10.1148/radiol.2017171315.
- [15]Zhao J,Wang YL,Li XB,et al.Comparative analysis of the diffusion kurtosis imaging and diffusion tensor imaging in grading gliomas,predicting tumour cell proliferation and IDH-1 gene mutation status[J].JNeurooncol,2019,141(1):195-203.DOI:10.1007/s11060-018-03025-7.
- [16]Figini M,Riva M,Graham M,et al.Prediction of isocitrate dehydrogenase genotype in brain gliomas with MRI:single-shell versus multishell diffusion models[J].Radiology,2018,289(3):788-796.DOI:10.1148/radiol.2018180054.
- [17]Wen PY,Mac Donald DR,Reardon DA,et al.Updated response assessment criteria for high-grade gliomas:response assessment in neuro-oncology working group[J].J Clin Oncol,2010,28(11):1963-1972.DOI:10.1200/jco.2009.26.3541.
- [18]Jiang HH,Yu KF,Li MX,et al.Classification of progression patterns in glioblastoma:analysis of predictive factors and clinical implications[J].Front Oncol,2020,10:590648.DOI:10.3389/fonc.2020.590648.
- [19]Bai J,Cheng JL,Gao AK,et al.Ankang.Interpretation of the 2016 WHOclassification of tumors of the central nervous system[J].Chin J Radiol,2016,50(12):1000-1005.DOI:10.3760/cma.j.issn.1005-1201.2016.12.025.白洁,程敬亮,高安康,等.2016年WHO中枢神经系统肿瘤分类解读[J].中华放射学杂志,2016,50(12):1000-1005.DOI:10.3760/cma.j.issn.1005-1201.2016.12.025.
- [20]Lee J,Wang N,Turk S,et al.Discriminating pseudoprogression and true progression in diffuse infiltrating glioma using multi-parametric MRI data through deep learning[J].Sci Rep,2020,10(1):20331.DOI:10.1038/s41598-020-77389-0.
- [21]Thust SC,van den Bent MJ,Smits M.Pseudoprogression of brain tumors[J].J Magn Reson Imaging,2018,48(3):571-589.DOI:10.1002/jmri.26171.
- [22]Bala?a C,Capellades J,Pineda E,et al.Pseudoprogression as an adverse event of glioblastoma therapy[J].Cancer Med,2017,6(12):2858-2866.DOI:10.1002/cam4.1242.
- [23]Hempel JM,Brendle C,Bender B,et al.Diffusion kurtosis imaging histogram parameter metrics predicting survival in integrated molecular subtypes of diffuse glioma:an observational cohort study[J].Eur J Radiol,2019,112:144-152.DOI:10.1016/j.ejrad.2019.01.014.
- [24]Wu XF,Liang X,Wang XC,et al.Differentiating high-grade glioma recurrence from pseudoprogression:Comparing diffusion kurtosis imaging and diffusion tensor imaging[J].Eur J Radiol,2021,135:109445.DOI:10.1016/j.ejrad.2020.109445.
- [25]Abdalla G,Dixon L,Sanverdi E,et al.The diagnostic role of diffusional kurtosis imaging in glioma grading and differentiation of gliomas from other intra-axial brain tumours:a systematic review with critical appraisal and meta-analysis[J].Neuroradiology,2020,62(7):791-802.DOI:10.1007/s00234-020-02425-9.
- [26]Li SR,Zheng Y,Sun WB,et al.Glioma grading,molecular feature classification,and microstructural characterization using MRdiffusional variance decomposition(DIVIDE) imaging[J].Eur Radiol,2021,31(11):8197-8207.DOI:10.1007/s00330-021-07959-x.
- [27]Kim MM,Umemura Y,Leung D.Bevacizumab and glioblastoma:past,present,and future directions[J].Cancer J,2018,24(4):180-186.DOI:10.1097/PPO.0000000000000326.
- [28]Gao XY,Wang YD,Wu SM,et al.Differentiation of treatment-related effects from glioma recurrence using machine learning classifiers based upon pre-and post-contrast T1WI and T2 FLAIR subtraction features:a two-center study[J].Cancer Manag Res,2020,12:3191-3201.DOI:10.2147/CMAR.S244262.
- [29]Lee J,Wang N,Turk S,et al.Discriminating pseudoprogression and true progression in diffuse infiltrating glioma using multi-parametric MRI data through deep learning[J].Sci Rep,2020,10(1):20331.DOI:10.1038/s41598-020-77389-0.
- [30]Patel SH,Poisson LM,Brat DJ,et al.T2-FLAIR mismatch,an imaging biomarker for IDH and 1p/19q status in lower-grade gliomas:a TCGA/TCIA project[J].Clin Cancer Res,2017,23(20):6078-6085.DOI:10.1158/1078-0432.CCR-17-0560.
- [31]Li FY,Shi WQ,Wang DW,et al.Evaluation of histopathological changes in the microstructure at the center and periphery of glioma tumors using diffusional kurtosis imaging[J].Clin Neurol Neurosurg,2016,151:120-127.DOI:10.1016/j.clineuro.2016.10.018.
- [32]Ismail M,Hill V,Statsevych V,et al.Shape features of the lesion habitat to differentiate brain tumor progression from pseudoprogression on routine multiparametric MRI:a multisite study[J].AJNR Am JNeuroradiol,2018,39(12):2187-2193.DOI:10.3174/ajnr.A5858.